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MLL LAB

MACHINE LEARNING AND LANGUAGE

“Zero” Style Training: LLMs learn to
self-evolve with minimal supervision

RL with verifiable

Pretraining rewards

Cold-Start Stage

- No need for human demonstration in SFT
- No need for human preference data across domains
- No need to train reward models

Extending to Real-World:
static 2 dynamic environments

RAGEN (Ours)

StarPO (State-Thinking-Actions-Reward Dynamic Tasks

Policy Optimization)
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- Prompt is finite; environments can have infinite states
- LLMs can interact to get feedback, not just respond
- Diversity comes for free: randomness, history, context

- More challenges: partial observation, credit assignment,

compounding errors

Defining Agent RL Training: MDP as sequence prediction
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Optimizing: a single answer - entire multi-turn

, , _ - Rollout generation
interaction trajectory
- Structured Output
Jstep(0) = 0,0~y (-15) [R(s, @) - Action Execution
JStarPO(e) — IEM,rfvarg [R(T)] - Feedback LOOp
- Trajectory evaluation

Can LLM Agents self-evolve with dynamic environments?
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- With dynamic environments, training become unstable unlike with verifiable problems

- LLMs stuck in Echo Trap where they repeatedly reason about states after RL training

- Potential reasons: model is unfamiliar with environment, reward has high variance, state
change can be random - model tend to repeat reasoning patterns for less challenging problems
and reasoning chains become limited after training

Guiding models to forbid being “trapped”

- Models can only generate diverse reasoning in part of cases

- Measuring reasoning diversity is difficult, so we measure outcome diversity
by measuring outcome reward variance

- Keeping diverse trajectories help model learning better
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- Model learn on diverse and long sequences in agent settings
- Optimization gradient also become less certain and variance become larger
- Stabilization methods of single-turn RL works well under agent settings
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Limitations and Future Work

- Agent learns well, while reasoning occurs
conditionally on semantic-rich environments

- Stochastic environments still hinder agent learning
and lead to conservative policies

- Future work: more modalities, credit assignment...
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