

T*: Re-thinking Temporal Search for Long-Form Video Understanding

Jinhui Ye*, Zihan Wang*, Haosen Sun, Keshigeyan Chandrasegaran, Zane Durante, Cristobal Eyzaguirre, Yonatan Bisk Juan Carlos Niebles, Ehsan Adeli, Li Fei-Fei, Jiajun Wu, Manling Li https://mll-lab-nu.github.io/lvhaystack

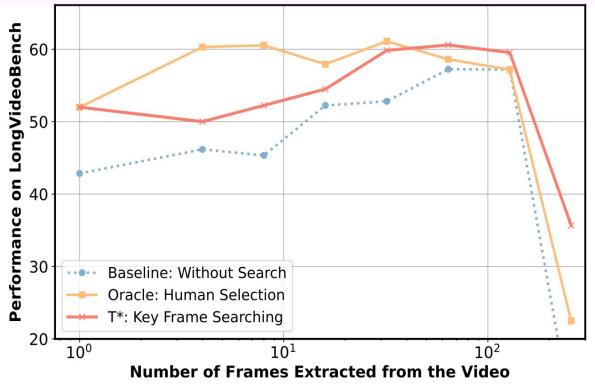
Needle in the Long Video Haystack

Question: Where was the white trash can before I raised it?

LongVideoHaystack Datasets: BLVHaystack

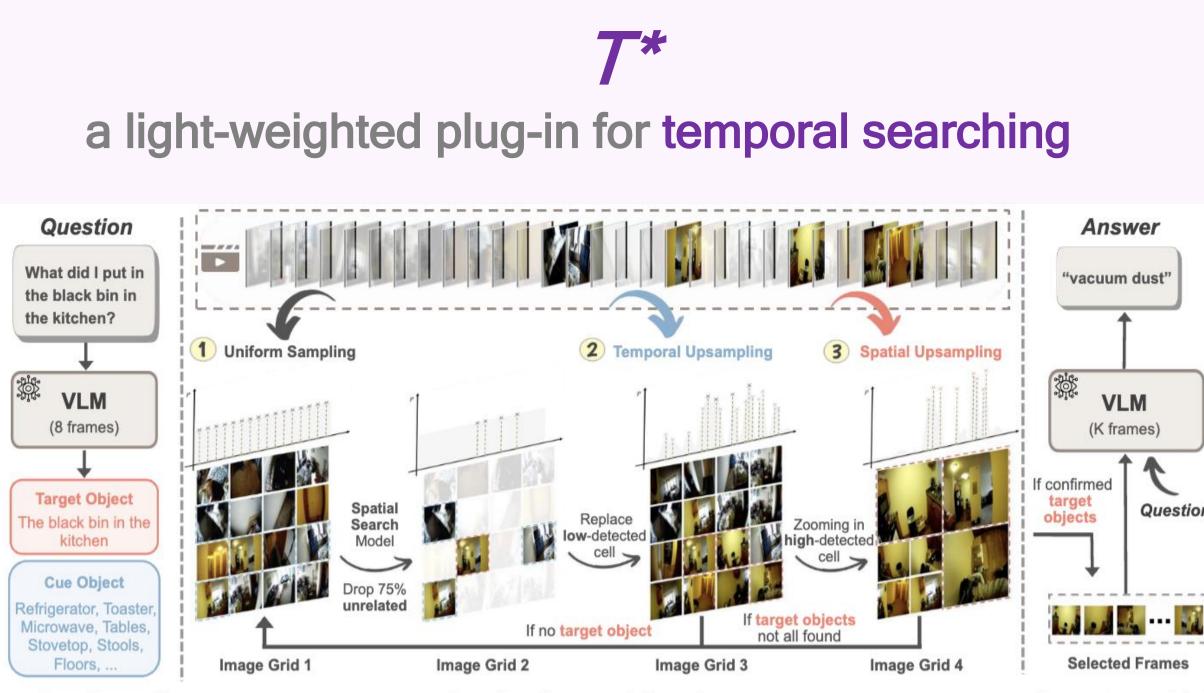
Haystack-Ego4D

988 videos **432** hours **15,092** QA pairs **23,800** frames


Haystack-LVBench

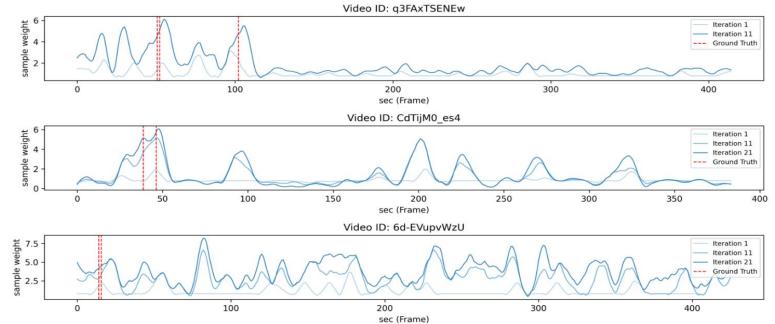
246 videos **57.7** hours

602 QA pairs


- **1,070** frames
- Objective: Select few keyframes to answer questions.
- Keyframe set must be complete and minimal.

Current VLMs Fall Short in Long Videos

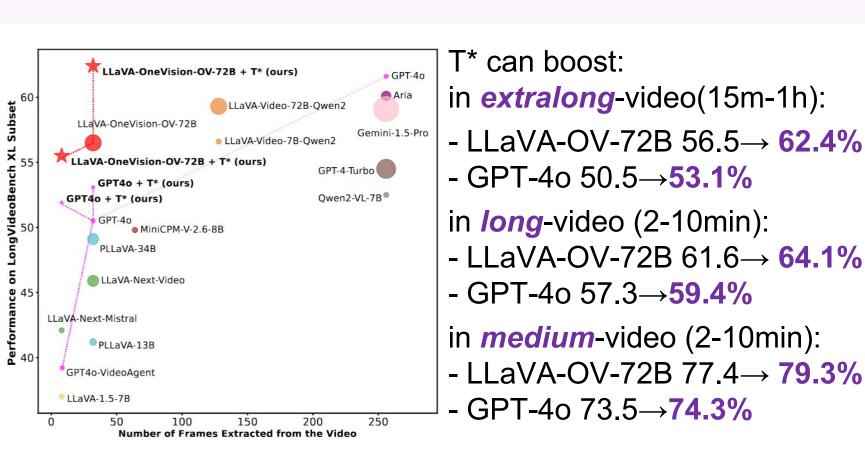
Medium-sized models (7b) **struggle** to handle more than 100 frames.


Large Models face **diminishing marginal returns** (5x more frames only brings 1.0 points) Reference: Qwen2-VL

Question Grounding

- Ground textual queries to visually descriptive objects

- Spatial Searching: Compose image grids from videos (sacrifice spatial accuracy), detect objects - Zooming in Temporally and Spatially: Adapt temporal distribution based on detection scores (temporal upsample and spatial upsample), iteratively sample until all objects are found. - Use these frames as keyframes for downstream tasks



Sampling weights gradually align with ground truth frames over iterations.

Question

Downstream Task

T^{*} allows the model to **zoom** in on distant relevant keyframes **simultaneously** (e.g., ~50s / ~100s for top plot).

Model	Frames	NExT-QA 0.7min	EgoSchema 3min	T* can also enhance short				
Baselines using Static Unifo	orm Sampl	ing						-
InternVideo [69]	90	49.1	32.1	video unde	erstan	ding	by 3-	
MVU [52]	16	55.2	60.3	4% on NExT- QA and				
LLoVi [86]	90	67.7	57.6		x I - Q/	A an	u	
LangRepo [23]	180	60.9	66.2	EgoSchen	าล			
LLaVA-OneVision-7B [28]	32	79.4	65.4	Lgooonon				
Baselines using Adaptive Fr	ame Selec	ting						
SeViLA [83]	32	63.6	25.7	Carata and Carata	Pearson	Pearson	Spearman	Spearma
VideoAgent [67]	8.4	71.3	60.2	Metric			Correlation	
LVNet [49]	12	72.9	66.0	Temporal F_1	0.901	0.037	0.700	0.188
VideoTree [70]	63.2	73.5	66.2	Temporal Precision		0.084	0.975	0.005
VidF4 [37]	8	74.1	-	Visual F_1	0.829	0.083	0.600	0.285
Ours: Plug in T^* for Efficient Temporal Search			Temporal Recall	0.655	0.231	0.700	0.188	
LLaVA-OneVision-7B [28]	8	76.4	63.6	Visual Recall	0.568	0.317	0.500	0.391
+ T*	8	80.4	66.6	Visual Precision	0.327	0.591	0.100	0.873

		0 70.4	05.0	visual receal	0.500	0.517	0.500	
+ <i>T</i> *		8 80.4	66.6	Visual Precision	0.327	0.591	0.100	
M-4h-J		Search	ing Efficiency		Overall Task Efficiency			
Method	Grounding	Matchin	g TFLOPs↓	Latency (sec) \downarrow	TFLOPs \downarrow	Latency (se	c) $\downarrow $ Acc \uparrow	
Baselines: Static Fra	me Sampling							
Uniform-8 [64]	N/A	N/A	N/A	0.2	139.3	3.8	53.7	
Baselines: Adaptive	Frame Selection	n						
VideoAgent [60]	GPT4×4	CLIP-1B×	840 536.5 [†]	30.2	690.7 [†]	34.9	49.2	
Retrieval-based	N/A	YOLO-110M	1×840 216.1	28.6	355.4	32.2	57.3	
Ours: T^* for Efficient	nt Keyframe Sea	arch						
Attention-based	LLaVA-72B×3	N/A	88.9	13.7	228.2	17.3	59.3	
Detector-based	LLaVA-7B×1	YOLO-110N	M×49 33.3	7.5	172.6	11.1	59.8	
Training-based	LLaVA-7B×1	YOLO-110N	M×38 30.3	6.8	169.6	10.4	60.3	

T*can plug in any VLMs